Latest ACD301 study materials
Real4Prep is an excellent platform where you get relevant, credible, and unique Appian ACD301 exam dumps designed according to the specified pattern, material, and format as suggested by the Appian ACD301 exam. To make the Appian ACD301 Exam Questions content up-to-date for free of cost up to 365 days after buying them, our certified trainers work strenuously to formulate the exam questions in compliance with the ACD301 dumps.
Appian ACD301 Exam Syllabus Topics:
Topic
Details
Topic 1
Topic 2
Topic 3
>> ACD301 Examcollection Vce <<
ACD301 Reliable Braindumps Ebook | Exam ACD301 Pass Guide
Our qualified team of Appian Appian Lead Developer study material to improve the quality and to match the changes in the syllabus and pattern shared by ACD301. Our desktop Appian ACD301 Practice Exam software is designed for all those candidates who want to learn and practice in the actual Appian ACD301 exam environment.
Appian Lead Developer Sample Questions (Q36-Q41):
NEW QUESTION # 36
You are designing a process that is anticipated to be executed multiple times a day. This process retrieves data from an external system and then calls various utility processes as needed. The main process will not use the results of the utility processes, and there are no user forms anywhere.
Which design choice should be used to start the utility processes and minimize the load on the execution engines?
Answer: A
Explanation:
Comprehensive and Detailed In-Depth Explanation:
As an Appian Lead Developer, designing a process that executes frequently (multiple times a day) and calls utility processes without using their results requires optimizing performance and minimizing load on Appian's execution engines. The absence of user forms indicates a backend process, so user experience isn't a concern-only engine efficiency matters. Let's evaluate each option:
A . Use the Start Process Smart Service to start the utility processes:
The Start Process Smart Service launches a new process instance independently, creating a separate process in the Work Queue. While functional, it increases engine load because each utility process runs as a distinct instance, consuming engine resources and potentially clogging the Java Work Queue, especially with frequent executions. Appian's performance guidelines discourage unnecessary separate process instances for utility tasks, favoring integrated subprocesses, making this less optimal.
B . Start the utility processes via a subprocess synchronously:
Synchronous subprocesses (e.g., a!startProcess with isAsync: false) execute within the main process flow, blocking until completion. For utility processes not used by the main process, this creates unnecessary delays, increasing execution time and engine load. With frequent daily executions, synchronous subprocesses could strain engines, especially if utility processes are slow or numerous. Appian's documentation recommends asynchronous execution for non-dependent, non-blocking tasks, ruling this out.
C . Use Process Messaging to start the utility process:
Process Messaging (e.g., sendMessage() in Appian) is used for inter-process communication, not for starting processes. It's designed to pass data between running processes, not initiate new ones. Attempting to use it for starting utility processes would require additional setup (e.g., a listening process) and isn't a standard or efficient method. Appian's messaging features are for coordination, not process initiation, making this inappropriate.
D . Start the utility processes via a subprocess asynchronously:
This is the best choice. Asynchronous subprocesses (e.g., a!startProcess with isAsync: true) execute independently of the main process, offloading work to the engine without blocking or delaying the parent process. Since the main process doesn't use the utility process results and there are no user forms, asynchronous execution minimizes engine load by distributing tasks across time, reducing Work Queue pressure during frequent executions. Appian's performance best practices recommend asynchronous subprocesses for non-dependent, utility tasks to optimize engine utilization, making this ideal for minimizing load.
Conclusion: Starting the utility processes via a subprocess asynchronously (D) minimizes engine load by allowing independent execution without blocking the main process, aligning with Appian's performance optimization strategies for frequent, backend processes.
Reference:
Appian Documentation: "Process Model Performance" (Synchronous vs. Asynchronous Subprocesses).
Appian Lead Developer Certification: Process Design Module (Optimizing Engine Load).
Appian Best Practices: "Designing Efficient Utility Processes" (Asynchronous Execution).
NEW QUESTION # 37
You are on a call with a new client, and their program lead is concerned about how their legacy systems will integrate with Appian. The lead wants to know what authentication methods are supported by Appian. Which three authentication methods are supported?
Answer: A,D,F
Explanation:
Comprehensive and Detailed In-Depth Explanation:
As an Appian Lead Developer, addressing a client's concerns about integrating legacy systems with Appian requires accurately identifying supported authentication methods for system-to-system communication or user access. The question focuses on Appian's integration capabilities, likely for both user authentication (e.g., SSO) and API authentication, as legacy system integration often involves both. Appian's documentation outlines supported methods in its Connected Systems and security configurations. Let's evaluate each option:
A . API Keys:
API Key authentication involves a static key sent in requests (e.g., via headers). Appian supports this for outbound integrations in Connected Systems (e.g., HTTP Authentication with an API key), allowing legacy systems to authenticate Appian calls. However, it's not a user authentication method for Appian's platform login-it's for system-to-system integration. While supported, it's less common for legacy system SSO or enterprise use cases compared to other options, making it a lower-priority choice here.
B . Biometrics:
Biometrics (e.g., fingerprint, facial recognition) isn't natively supported by Appian for platform authentication or integration. Appian relies on standard enterprise methods (e.g., username/password, SSO), and biometric authentication would require external identity providers or custom clients, not Appian itself. Documentation confirms no direct biometric support, ruling this out as an Appian-supported method.
C . SAML:
Security Assertion Markup Language (SAML) is fully supported by Appian for user authentication via Single Sign-On (SSO). Appian integrates with SAML 2.0 identity providers (e.g., Okta, PingFederate), allowing users to log in using credentials from legacy systems that support SAML-based SSO. This is a key enterprise method, widely used for integrating with existing identity management systems, and explicitly listed in Appian's security configuration options-making it a top choice.
D . CAC:
Common Access Card (CAC) authentication, often used in government contexts with smart cards, isn't natively supported by Appian as a standalone method. While Appian can integrate with CAC via SAML or PKI (Public Key Infrastructure) through an identity provider, it's not a direct Appian authentication option. Documentation mentions smart card support indirectly via SSO configurations, but CAC itself isn't explicitly listed, making it less definitive than other methods.
E . OAuth:
OAuth (specifically OAuth 2.0) is supported by Appian for both outbound integrations (e.g., Authorization Code Grant, Client Credentials) and inbound API authentication (e.g., securing Appian Web APIs). For legacy system integration, Appian can use OAuth to authenticate with APIs (e.g., Google, Salesforce) or allow legacy systems to call Appian services securely. Appian's Connected System framework includes OAuth configuration, making it a versatile, standards-based method highly relevant to the client's needs.
F . Active Directory:
Active Directory (AD) integration via LDAP (Lightweight Directory Access Protocol) is supported for user authentication in Appian. It allows synchronization of users and groups from AD, enabling SSO or direct login with AD credentials. For legacy systems using AD as an identity store, this is a seamless integration method. Appian's documentation confirms LDAP/AD as a core authentication option, widely adopted in enterprise environments-making it a strong fit.
Conclusion: The three supported authentication methods are C (SAML), E (OAuth), and F (Active Directory). These align with Appian's enterprise-grade capabilities for legacy system integration: SAML for SSO, OAuth for API security, and AD for user management. API Keys (A) are supported but less prominent for user authentication, CAC (D) is indirect, and Biometrics (B) isn't supported natively. This selection reassures the client of Appian's flexibility with common legacy authentication standards.
Reference:
Appian Documentation: "Authentication for Connected Systems" (OAuth, API Keys).
Appian Documentation: "Configuring Authentication" (SAML, LDAP/Active Directory).
Appian Lead Developer Certification: Integration Module (Authentication Methods).
NEW QUESTION # 38
As part of your implementation workflow, users need to retrieve data stored in a third-party Oracle database on an interface. You need to design a way to query this information.
How should you set up this connection and query the data?
Answer: C
Explanation:
Comprehensive and Detailed In-Depth Explanation:As an Appian Lead Developer, designing a solution to query data from a third-party Oracle database for display on an interface requires secure, efficient, and maintainable integration. The scenario focuses on real-time retrieval for users, so the design must leverage Appian's data connectivity features. Let's evaluate each option:
* A. Configure a Query Database node within the process model. Then, type in the connection information, as well as a SQL query to execute and return the data in process variables:The Query Database node (part of the Smart Services) allows direct SQL execution against a database, but it requires manual connection details (e.g., JDBC URL, credentials), which isn't scalable or secure for Production. Appian's documentation discourages using Query Database for ongoing integrations due to maintenance overhead, security risks (e.g., hardcoding credentials), and lack of governance. This is better for one-off tasks, not real-time interface queries, making it unsuitable.
* B. Configure a timed utility process that queries data from the third-party database daily, and stores it in the Appian business database. Then use a!queryEntity using the Appian data source to retrieve the data:
This approach syncs data daily into Appian's business database (e.g., via a timer event and Query Database node), then queries it with a!queryEntity. While it works for stale data, it introduces latency (up to 24 hours) for users, which doesn't meet real-time needs on an interface. Appian's best practices recommend direct data source connections for up-to-date data, not periodic caching, unless latency is acceptable-making this inefficient here.
* C. Configure an expression-backed record type, calling an API to retrieve the data from the third-party database. Then, use a!queryRecordType to retrieve the data:Expression-backed record types use expressions (e.g., a!httpQuery()) to fetch data, but they're designed for external APIs, not direct database queries. The scenario specifies an Oracle database, not an API, so this requires building a custom REST service on the Oracle side, adding complexity and latency. Appian's documentation favors Data Sources for database queries over API calls when direct access is available, making this less optimal and over-engineered.
* D. In the Administration Console, configure the third-party database as a "New Data Source." Then, use a!queryEntity to retrieve the data:This is the best choice. In the Appian Administration Console, you can configure a JDBC Data Source for the Oracle database, providing connection details (e.g., URL, driver, credentials). This creates a secure, managed connection for querying via a!queryEntity, which is Appian's standard function for Data Store Entities. Users can then retrieve data on interfaces using expression-backed records or queries, ensuring real-time access with minimal latency. Appian's documentation recommends Data Sources for database integrations, offering scalability, security, and governance-perfect for this requirement.
Conclusion: Configuring the third-party database as a New Data Source and using a!queryEntity (D) is the recommended approach. It provides direct, real-time access to Oracle data for interface display, leveraging Appian's native data connectivity features and aligning with Lead Developer best practices for third-party database integration.
References:
* Appian Documentation: "Configuring Data Sources" (JDBC Connections and a!queryEntity).
* Appian Lead Developer Certification: Data Integration Module (Database Query Design).
* Appian Best Practices: "Retrieving External Data in Interfaces" (Data Source vs. API Approaches).
NEW QUESTION # 39
You are developing a case management application to manage support cases for a large set of sites. One of the tabs in this application s site Is a record grid of cases, along with Information about the site corresponding to that case. Users must be able to filter cases by priority level and status.
You decide to create a view as the source of your entity-backed record, which joins the separate case/site tables (as depicted in the following Image).
Which three column should be indexed?
Answer: B,E,F
Explanation:
Indexing columns can improve the performance of queries that use those columns in filters, joins, or order by clauses. In this case, the columns that should be indexed are site_id, status, and priority, because they are used for filtering or joining the tables. Site_id is used to join the case and site tables, so indexing it will speed up the join operation. Status and priority are used to filter the cases by the user's input, so indexing them will reduce the number of rows that need to be scanned. Name, modified_date, and case_id do not need to be indexed, because they are not used for filtering or joining. Name and modified_date are only used for displaying information in the record grid, and case_id is only used as a unique identifier for each record.
Verified References: Appian Records Tutorial, Appian Best Practices
As an Appian Lead Developer, optimizing a database view for an entity-backed record grid requires indexing columns frequently used in queries, particularly for filtering and joining. The scenario involves a record grid displaying cases with site information, filtered by "priority level" and "status," and joined via the site_id foreign key. The image shows two tables (site and case) with a relationship via site_id. Let's evaluate each column based on Appian's performance best practices and query patterns:
* A. site_id:This is a primary key in the site table and a foreign key in the case table, used for joining the tables in the view. Indexing site_id in the case table (and ensuring it's indexed in site as a PK) optimizes JOIN operations, reducing query execution time for the record grid. Appian's documentation recommends indexing foreign keys in large datasets to improve query performance, especially for entity-backed records. This is critical for the join and must be included.
* B. status:Users filter cases by "status" (a varchar column in the case table). Indexing status speeds up filtering queries (e.g., WHERE status = 'Open') in the record grid, particularly with large datasets.
Appian emphasizes indexing columns used in WHERE clauses or filters to enhance performance, making this a key column for optimization. Since status is a common filter, it's essential.
* C. name:This is a varchar column in the site table, likely used for display (e.g., site name in the grid).
However, the scenario doesn't mention filtering or sorting by name, and it's not part of the join or required filters. Indexing name could improve searches if used, but it's not a priority given the focus on priority and status filters. Appian advises indexing only frequently queried or filtered columns to avoid unnecessary overhead, so this isn't necessary here.
* D. modified_date:This is a date column in the case table, tracking when cases were last updated. While useful for sorting or historical queries, the scenario doesn't specify filtering or sorting by modified_date in the record grid. Indexing it could help if used, but it's not critical for the current requirements.
Appian's performance guidelines prioritize indexing columns in active filters, making this lower priority than site_id, status, and priority.
* E. priority:Users filter cases by "priority level" (a varchar column in the case table). Indexing priority optimizes filtering queries (e.g., WHERE priority = 'High') in the record grid, similar to status. Appian' s documentation highlights indexing columns used in WHERE clauses for entity-backed records, especially with large datasets. Since priority is a specified filter, it's essential to include.
* F. case_id:This is the primary key in the case table, already indexed by default (as PKs are automatically indexed in most databases). Indexing it again is redundant and unnecessary, as Appian's Data Store configuration relies on PKs for unique identification but doesn't require additional indexing for performance in this context. The focus is on join and filter columns, not the PK itself.
Conclusion: The three columns to index are A (site_id), B (status), and E (priority). These optimize the JOIN (site_id) and filter performance (status, priority) for the record grid, aligning with Appian's recommendations for entity-backed records and large datasets. Indexing these columns ensures efficient querying for user filters, critical for the application's performance.
References:
* Appian Documentation: "Performance Best Practices for Data Stores" (Indexing Strategies).
* Appian Lead Developer Certification: Data Management Module (Optimizing Entity-Backed Records).
* Appian Best Practices: "Working with Large Data Volumes" (Indexing for Query Performance).
NEW QUESTION # 40
You are taking your package from the source environment and importing it into the target environment.
Review the errors encountered during inspection:
What is the first action you should take to Investigate the issue?
Answer: A
Explanation:
The error log provided indicates issues during the package import into the target environment, with multiple objects failing to import due to missing precedents. The key error messages highlight specific UUIDs associated with objects that cannot be resolved. The first error listed states:
"'TEST_ENTITY_PROFILE_MERGE_HISTORY': The content [id=uuid-a-0000m5fc-f0e6-8000-9b01-011c48011c48, 18028821] was not imported because a required precedent is missing: entity [uuid=a-0000m5fc-f0e6-8000-9b01-011c48011c48, 18028821] cannot be found..." According to Appian's Package Deployment Best Practices, when importing a package, the first step in troubleshooting is to identify the root cause of the failure. The initial error in the log points to an entity object with a UUID ending in 18028821, which failed to import due to a missing precedent. This suggests that the object itself or one of its dependencies (e.g., a data store or related entity) is either missing from the package or not present in the target environment.
Option A (Check whether the object (UUID ending in 18028821) is included in this package): This is the correct first action. Since the first error references this UUID, verifying its inclusion in the package is the logical starting point. If it's missing, the package export from the source environment was incomplete. If it's included but still fails, the precedent issue (e.g., a missing data store) needs further investigation.
Option B (Check whether the object (UUID ending in 7t00000i4e7a) is included in this package): This appears to be a typo or corrupted UUID (likely intended as something like "7t000014e7a" or similar), and it's not referenced in the primary error. It's mentioned later in the log but is not the first issue to address.
Option C (Check whether the object (UUID ending in 25606) is included in this package): This UUID is associated with a data store error later in the log, but it's not the first reported issue.
Option D (Check whether the object (UUID ending in 18028931) is included in this package): This UUID is mentioned in a subsequent error related to a process model or expression rule, but it's not the initial failure point.
Appian recommends addressing errors in the order they appear in the log to systematically resolve dependencies. Thus, starting with the object ending in 18028821 is the priority.
NEW QUESTION # 41
......
Actual Appian ACD301 exam questions in our PDF format are ideal for restrictions-free quick preparation for the test. Appian ACD301 Real exam questions which are available for download in PDF format can be printed and studied in a hard copy format. Our Appian Lead Developer (ACD301) PDF file of updated exam questions is compatible with smartphones, laptops, and tablets. Therefore, you can use this Appian Lead Developer PDF to prepare for the test without limits of time and place.
ACD301 Reliable Braindumps Ebook: https://www.real4prep.com/ACD301-exam.html